\(\int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [615]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 325 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a^2 d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+4/5*b*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c
)^(3/2)+2/5*(a-b)*(3*a^2+b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)
/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d-2/5*(a-b)*(3*a-
b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*
(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2878, 3134, 3077, 2895, 3073} \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{5 a^2 d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{5 a d}+\frac {4 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(7/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(3*a^2 + b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[
Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)]
)/(5*a^2*d) - (2*(a - b)*(3*a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a
+ b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x])
)/(a - b)])/(5*a*d) + (2*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (4*b*Sqrt[a + b*C
os[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(3/2))

Rule 2878

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^
2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[c*
(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d
*(b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2}{5} \int \frac {3 a b+\frac {1}{2} \left (3 a^2+5 b^2\right ) \cos (c+d x)+a b \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {\frac {3}{4} a \left (3 a^2+b^2\right )+3 a^2 b \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a} \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {1}{5} ((a-b) (3 a-b)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{5} \left (3 a^2+b^2\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 (a-b) \sqrt {a+b} \left (3 a^2+b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a^2 d}-\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 9.81 (sec) , antiderivative size = 399, normalized size of antiderivative = 1.23 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\frac {8 \cos ^2\left (\frac {1}{2} (c+d x)\right )^{7/2} \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (-2 \left (3 a^3+3 a^2 b+a b^2+b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a \left (3 a^2+4 a b+b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-\left (3 a^2+b^2\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{(1+\cos (c+d x))^{3/2}}+(a+b \cos (c+d x)) \left (5 a^2+b^2+4 a b \cos (c+d x)+\left (3 a^2+b^2\right ) \cos (2 (c+d x))\right ) \tan (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(7/2),x]

[Out]

((8*(Cos[(c + d*x)/2]^2)^(7/2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(-2
*(3*a^3 + 3*a^2*b + a*b^2 + b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 +
 Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(3*a^2 + 4*a*b + b^2)*Sqrt[Cos[c
+ d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d
*x)/2]], (-a + b)/(a + b)] - (3*a^2 + b^2)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/
2]))/(1 + Cos[c + d*x])^(3/2) + (a + b*Cos[c + d*x])*(5*a^2 + b^2 + 4*a*b*Cos[c + d*x] + (3*a^2 + b^2)*Cos[2*(
c + d*x)])*Tan[c + d*x])/(5*a*d*Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2103\) vs. \(2(293)=586\).

Time = 13.86 (sec) , antiderivative size = 2104, normalized size of antiderivative = 6.47

method result size
default \(\text {Expression too large to display}\) \(2104\)

[In]

int((a+cos(d*x+c)*b)^(3/2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/5/d*(-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c
)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^4+4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^4+EllipticF(cot
(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a
+b))^(1/2)*a*b^2*cos(d*x+c)^4-6*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^3-2*EllipticE(cot(d*x+c)-csc(d*x+c),(
-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos
(d*x+c)^3+8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*
x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^3+2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3-3*Elliptic
E(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c
))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2+6*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^3-3*EllipticE(cot(d*x+c)-csc(d*x+c
),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*co
s(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x
+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^3*cos(d*x+c)^2-3*a*b^2*cos(d*x+c)^2*sin(d*x+c)-3*a^2*b*cos(d*x+c)*sin(d*x
+c)-sin(d*x+c)*cos(d*x+c)*a^3-3*sin(d*x+c)*cos(d*x+c)^2*a^2*b-a^3*sin(d*x+c)-b^3*cos(d*x+c)^3*sin(d*x+c)-Ellip
ticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*
x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^2+4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2+EllipticF(cot(d*x+c)-csc(d*
x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b
^2*cos(d*x+c)^2-3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+
cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^4-3*a^2*b*cos(d*x+c)^3*sin(d*x+c)-2*a*b^2*cos(d*x+c
)^3*sin(d*x+c)+3*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+c
os(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^2-3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/
2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^4-EllipticE
(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c)
)/(a+b))^(1/2)*b^3*cos(d*x+c)^4+3*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^4-6*EllipticE(cot(d*x+c)-csc(d*x+c),(
-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d
*x+c)^3-2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+
c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^3*cos(d*x+c)^3-3*a^3*cos(d*x+c)^2*sin(d*x+c))/(1+cos(d*x+c))/(a+cos(d*x+c)
*b)^(1/2)/cos(d*x+c)^(5/2)/a

Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \]

[In]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(7/2),x)

[Out]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(7/2), x)